1
Fork 0
glider/src/main.rs

421 lines
12 KiB
Rust

use std::sync::Mutex;
use constants::*;
use nalgebra::Vector3;
use scad::*;
use selig::Point;
use selig::SeligFile;
use selig::Span;
use std::ops::Range;
mod constants;
mod selig;
static PARTS: Mutex<Vec<ScadObject>> = Mutex::new(Vec::new());
fn main() {
let mut scad_file = ScadFile::new();
//let mut parts: Vec<ScadObject> = Vec::new();
let mut parts = Vec::new();
scad_file.set_detail(50);
// cambered airfoil, used in the wing
let wing_airfoil: SeligFile = SeligFile::parse(include_str!("../ag24.dat"));
println!(
"name {}, perim {}",
wing_airfoil.get_name(),
wing_airfoil.get_points().length()
);
println!(
"desc {}",
wing_airfoil
.get_description()
.clone()
.unwrap_or("no desc".to_string())
);
// symetric airfoil, used in the control surfaces
let control_airfoil: SeligFile = SeligFile::parse(include_str!("../edgevertical.dat"));
let wing_transform = mirrored_wing(&wing_airfoil, &WING);
// spars
// "fuselage"
scad_file.add_object(scad!(Rotate(-90.0, vec3(0.0, 0.0, 1.0));
spar(LENGTH, false)));
// rudder
let mut rudder = scad!(Rotate(90.0, vec3(1.0, 0.0, 0.0)));
let (mut struts,mut spar) = wing(
&control_airfoil,
&RUDDER,
SparType::Center,
);
rudder.add_child(struts.visualization);
rudder.add_child(spar.visualization);
parts.append(struts.parts.as_mut());
parts.append(spar.parts.as_mut());
rudder = scad!(Translate(vec3(LENGTH-RUDDER_CHORD, 0.0, 0.0)); rudder);
scad_file.add_object(rudder);
// elevator
let mut elevator = mirrored_wing(&wing_airfoil, &ELEVATOR);
scad_file.add_object(scad!(Translate(vec3(LENGTH - ELEVATOR_CHORD, 0.0, 0.0)); elevator.visualization));
parts.append(&mut elevator.parts);
let cardboard = vec3(0.38, 0.26, 0.26);
scad_file.add_object(scad!(Color(cardboard); wing_transform.visualization));
scad_file.write_to_file(String::from("build/assembly.scad"));
for (idx, part) in PARTS.lock().unwrap().clone().into_iter().enumerate() {
let mut file = ScadFile::new();
file.set_detail(50);
file.add_object(part);
file.write_to_file(format!("build/part{idx}.scad"));
}
let mut allparts = ScadFile::new();
allparts.set_detail(50);
for (idx, part) in PARTS.lock().unwrap().iter().cloned().enumerate() {
allparts.add_object(scad!(Translate2d(vec2(0.0, INF * idx as f32)); part));
}
allparts.write_to_file("build/allparts.scad".to_string());
}
/// A physical object
struct Construct {
/// The object in 3d space
pub visualization: ScadObject,
/// the 2d parts that make up the object
pub parts: Vec<ScadObject>,
}
impl Construct {
fn new(visualization: ScadObject, parts: Vec<ScadObject>) -> Self {
Construct {
visualization,
parts,
}
}
/// A construct with no parts
fn cosmetic(visualization: ScadObject) -> Self {
Construct { visualization, parts: Vec::new() }
}
/// Convert to tuple
/// (visualization, parts)
fn tup(self) -> (ScadObject, Vec<ScadObject>) {
(self.visualization, self.parts)
}
}
fn mirrored_wing(wing_airfoil: &SeligFile, wing_config: &WingConfig) -> Construct {
let mut parts = Vec::new();
let mut wing_transform = scad!(Translate(vec3(0.0, 0.0, 0.0)));
// struts
let mut symetric_spar = scad!(Union);
for port in [true, false] {
let (mut strut, spar) = wing(wing_airfoil, wing_config, SparType::Top);
let mut wing = strut.visualization;
let mut top_spar_neg = spar.visualization;
parts.append(strut.parts.as_mut());
let transform = Translate(vec3(0.0, FUSELAGE_GAP,0.0));
wing = scad!(transform.clone(); wing);
top_spar_neg = scad!(transform; top_spar_neg);
if port {
let mirror = Mirror(vec3(0.0, 1.0, 0.0));
wing = scad!(mirror.clone(); wing);
top_spar_neg = scad!(mirror; top_spar_neg);
}
symetric_spar.add_child(top_spar_neg);
wing_transform.add_child(wing);
}
// fuselage affixment point
symetric_spar.add_child(centered_cube(
vec3(CHORD, FUSELAGE_GAP * 2.0, 1.0),
(false, true, false),
));
parts.push(scad!(Projection(false); symetric_spar.clone()));
wing_transform.add_child(symetric_spar);
Construct::new(
wing_transform.clone()
, parts)
}
/// Returns (struts, spar)
fn wing(wing_airfoil: &SeligFile, wing_config: &WingConfig, spar: SparType) -> (Construct, Construct) {
let (wing, wing_parts) = wing_struts(
wing_airfoil,
&wing_config,
&spar,
).tup();
// TODO: other spar types
let spar = match spar {
SparType::None => {
scad!(Union)
},
SparType::Top => {
let top_spar = topwing_spar(
wing_airfoil,
wing_config,
);
let mut spar = scad!(Difference; top_spar);
spar.add_child(wing.clone());
spar
},
SparType::Center => {
// TODO: taper
let mut mid_spar = scad!(Hull);
let bottom = centered_cube(vec3(wing_config.chord * (MIDSPAR_RANGE.end - MIDSPAR_RANGE.start) , CARDBOARD_WIDTH, CARDBOARD_WIDTH), (false, false, true));
let mut top = scad!(Translate(vec3(0.0, wing_config.length - CARDBOARD_WIDTH, 0.0)));
top.add_child(scad!(Scale(vec3(wing_config.taper, 1.0, 1.0)); bottom.clone()));
mid_spar.add_child(top);
mid_spar.add_child(bottom);
mid_spar = scad!(Translate(vec3(MIDSPAR_RANGE.start * wing_config.chord, 0.0, 0.0)); mid_spar);
let mut spar = scad!(Difference; mid_spar);
spar.add_child(wing.clone());
spar
},
};
let spar_flat = scad!(Projection(false); spar.clone());
let strut = Construct::new(wing, wing_parts);
let spar = Construct::new(spar, vec![spar_flat]);
(strut, spar)
}
enum SparType {
/// No spar, just struts
None,
/// Spar along the top of the wing
Top,
/// Spar that passes through each strut
Center,
}
/// returns a extruded airfoil with the given dimensions
fn strut(airfoil: &SeligFile, chord: f32, width: f32, spar: &SparType) -> Construct {
let aerofoil = scad::PolygonParameters::new(airfoil.get_points().to_vec());
let shape = scad!(Polygon(aerofoil));
let mut parts = Vec::new();
let strut_hole = {
match spar {
SparType::Top => topspar_negative(airfoil, chord, 0.1..0.6),
SparType::Center => {
scad!(Translate2d(vec2(MIDSPAR_RANGE.start, 0.0));
centered_square(vec2(MIDSPAR_RANGE.end - MIDSPAR_RANGE.start, CARDBOARD_WIDTH/ chord), (false,true))
)
}
SparType::None => {
scad!(Union)
}
}
};
let shape = shape;
let chord = chord;
let mut strut_shape = scad!(Difference);
strut_shape.add_child(shape);
strut_shape.add_child(strut_hole);
let shape = strut_shape;
let extrude = LinExtrudeParams {
height: width,
center: true,
..Default::default()
};
let unit: Vector3<f32> = Vector3::new(1.0, 1.0, 1.0);
let scaled = scad!(Scale(unit * chord); shape);
parts.push(scaled.clone());
let strut = scad!(LinearExtrude(extrude); scaled);
let rotated = scad!(Rotate(90.0, vec3(1.0, 0.0, 0.0)); strut);
Construct {
visualization: rotated,
parts,
}
}
fn extrude_strut(
shape: ScadObject,
strut_hole: ScadObject,
width: f32,
chord: f32,
register: bool,
) -> ScadObject {
let mut strut_shape = scad!(Difference);
strut_shape.add_child(shape);
strut_shape.add_child(strut_hole);
let shape = strut_shape;
let extrude = LinExtrudeParams {
height: width,
center: true,
..Default::default()
};
let unit: Vector3<f32> = Vector3::new(1.0, 1.0, 1.0);
let scaled = scad!(Scale(unit * chord); shape);
if register {
register_part(scaled.clone());
}
let strut = scad!(LinearExtrude(extrude); scaled);
let rotated = scad!(Rotate(90.0, vec3(1.0, 0.0, 0.0)); strut);
rotated
}
fn topspar_negative(airfoil: &SeligFile, chord: f32, range: Range<f32>) -> ScadObject {
let points = airfoil.get_points();
let points = &points[0..points.len() / 2];
let perimeter = points.to_vec().length();
let span = points
.to_vec()
.points_in_range(perimeter * (1.0 - range.end)..perimeter * (1.0 - range.start));
let mut mask = scad!(Union);
let mut last: Option<ScadObject> = None;
for point in span {
let mut current = scad!(Square(vec2(0.001 / chord, CARDBOARD_WIDTH / chord)));
current = scad!(Translate2d(point - vec2(0.0, CARDBOARD_WIDTH/chord)); current);
if let Some(last_mask) = last {
let mut hull = scad!(Hull);
hull.add_child(current.clone());
hull.add_child(last_mask);
mask.add_child(hull);
}
last = Some(current);
}
register_part(mask.clone());
mask
}
fn spar(length: f32, center: bool) -> ScadObject {
let mut spar = scad!(Union);
register_part(scad!(Square(vec2(length, SPAR_SIDE_WIDTH * 3.0))));
for i in 0..3 {
let mut panel = scad!(Cube(vec3(SPAR_SIDE_WIDTH, length, CARDBOARD_WIDTH)));
if center {
panel = scad!(Translate(vec3(0.0, -length/2.0, 0.0)); panel)
}
let rot = 120.0 * i as f32;
spar.add_child(scad!(
Rotate(rot, vec3(0.0, 1.0, 0.0)); panel
));
}
spar
}
fn register_part(part: ScadObject) {
PARTS.lock().unwrap().push(part);
}
fn lerp(a: f32, b: f32, x: f32) -> f32 {
a * (1.0 - x) + b * x
}
fn wing_struts(
aerofoil: &SeligFile,
config: &WingConfig,
spar: &SparType,
) -> Construct {
let mut wing = scad!(Translate(vec3(0.0, 0.0, 0.0)));
let mut parts = Vec::new();
// struts
for strut_idx in 0..config.struts + 1 {
let gap = config.length / config.struts as f32;
let chord = lerp(config.chord, config.chord * config.taper, strut_idx as f32 / config.struts as f32);
let spacing = strut_idx as f32 * gap;
let mut transform = scad!(Translate(vec3(0.0, spacing, 0.0)));
let mut strut = strut(aerofoil, chord, CARDBOARD_WIDTH, &spar);
transform.add_child(strut.visualization);
parts.append(strut.parts.as_mut());
wing.add_child(transform);
}
Construct { visualization: wing, parts }
}
fn topwing_spar(
aerofoil: &SeligFile,
config: &WingConfig
) -> ScadObject {
let mut wing = scad!(Hull);
let mut last_segment: Option<ScadObject> = None;
let mut pre_vis = scad!(Union);
// struts
for strut_idx in 0..config.struts + 1 {
let gap = config.length / config.struts as f32;
let chord = lerp(config.chord, config.chord * config.taper, strut_idx as f32 / config.struts as f32);
let spacing = strut_idx as f32 * gap;
let shape = topspar_negative(aerofoil, chord, 0.1..0.6);
let extruded = extrude_strut(shape.clone(), scad!(Union), CARDBOARD_WIDTH, chord, false);
let mut transform = scad!(Translate(vec3(0.0, spacing, 0.0)));
transform.add_child(extruded);
// in betweens
if let Some(last) = last_segment {
let mut hull = scad!(Hull);
let extrude = LinExtrudeParams {
height: 0.01,
center: true,
..Default::default()
};
let mut last_t = scad!(Translate(vec3(0.0, -gap, 0.0)));
last_t.add_child(scad!(LinearExtrude(extrude.clone()); last));
//hull.add_child(last_t);
//hull.add_child(scad!(LinearExtrude(extrude); shape.clone()));
transform.add_child(hull);
}
pre_vis.add_child(transform);
last_segment = Some(shape);
}
wing.add_child(pre_vis);
wing
}
/// Parameters for what would be half of a symmetrical (port/starboard) wing
/// All distance units are millimeters
pub struct WingConfig {
pub length: f32, /// half of the wingspan
pub chord: f32,
pub taper: f32, /// chord at wingtip in relation to the chord at the root
pub struts: usize,
}