616 lines
18 KiB
Rust
616 lines
18 KiB
Rust
//! Send and receive data over lossy streams of bytes.
|
|
//!
|
|
//! Living in / inspired by the [data link layer][dll] or layer 2
|
|
//! in the OSI networking model, this module enables sending slices of
|
|
//! bytes of definite length over an underlying lossy transport that
|
|
//! only supports sending an unstructured stream of bytes (a [physical
|
|
//! layer][pl], such as ITM, UART or SPI).
|
|
//!
|
|
//! [dll]: https://en.wikipedia.org/wiki/Data_link_layer
|
|
//! [pl]: https://en.wikipedia.org/wiki/Physical_layer
|
|
//!
|
|
//! The transport may corrupt the stream by dropping or modifying some
|
|
//! bytes en route. When the transport returns corrupt data the
|
|
//! decoder may return errors or corrupted payloads, but if the
|
|
//! transport starts operating without losses again the decoder should
|
|
//! return new uncorrupted frames.
|
|
//!
|
|
//! ## Encoding
|
|
//!
|
|
//! Currently the encoding is:
|
|
//!
|
|
//! * The "body": payload [COBS]-encoded to remove bytes equal to zero
|
|
//! * A terminating zero byte.
|
|
//! [COBS]: https://en.wikipedia.org/wiki/Consistent_Overhead_Byte_Stuffing
|
|
//!
|
|
//! The encoding is not stable at the moment, i.e. it can and will
|
|
//! change between minor versions. Consequently encoded data from this
|
|
//! crate is unsuitable for long-term storage or transmission between
|
|
//! different versions of an application. The API should be kept
|
|
//! stable between versions where possible and the crate version will
|
|
//! follow Rust semver rules on API changes.
|
|
//!
|
|
//! ## Cargo feature flags
|
|
//!
|
|
//! `use_std`: Use standard library. Enabled by default, disable for no_std.
|
|
//!
|
|
//! `trace`: Enable to print all data to stdout for testing.
|
|
//!
|
|
//! `typed`: Enables the [`typed`](typed/index.html) sub-module for sending and
|
|
//! receiving structs serialized with serde. Enabled by default.
|
|
//!
|
|
//! ## API
|
|
//!
|
|
//! Payload data and encoded frame data have separate types to avoid
|
|
//! mixing them up. You are encouraged to use these types in your own
|
|
//! code when integrating with this crate. Definitions:
|
|
//!
|
|
//! ```rust,ignore
|
|
//! /// Arbitrary user data.
|
|
//! pub type Payload = [u8];
|
|
//!
|
|
//! /// Data that is encoded as a frame. It is ready to send, or may have
|
|
//! /// just been received.
|
|
//! pub type Encoded = [u8];
|
|
//!
|
|
//! /// A buffer that is used as temporary storage.
|
|
//! /// There are no guarantees on its contents after use.
|
|
//! pub type TempBuffer = [u8];
|
|
//!
|
|
//! /// Heap-allocated user data used as a return type.
|
|
//! #[cfg(feature = "use_std")]
|
|
//! pub struct BoxPayload(_);
|
|
//!
|
|
//! /// Heap-allocated frame data used as a return type.
|
|
//! #[cfg(feature = "use_std")]
|
|
//! pub struct BoxEncoded(_);
|
|
//! ```
|
|
//!
|
|
//! Consumers have a choice of interfaces to enable usability,
|
|
//! efficiency, and use from `no_std` crates.
|
|
//!
|
|
//! See the `decode_*` and `encode_*` functions for simple uses with
|
|
//! various input and output types.
|
|
//!
|
|
//! Note that data typed as `Payload` or `Encoded` may be
|
|
//! efficiently passed as a function argument by reference, but is
|
|
//! returned using an opaque struct (`BoxPayload`, `BoxEncoded`)
|
|
//! containing a heap-allocated value instead. Consequently `encode_*`
|
|
//! and `decode_*` variants that require this are only available with
|
|
//! the `use_std` Cargo feature.
|
|
//!
|
|
//! For sending or receiving a stream of frames, consider the `Reader`
|
|
//! and `Writer` structs that wrap an `io::Read` or `io::Write`
|
|
//! instance.
|
|
//!
|
|
//! ## Example usage from a std crate
|
|
//!
|
|
//! TODO.
|
|
//!
|
|
//! ## Example usage from a no_std crate
|
|
//!
|
|
//! TODO.
|
|
//!
|
|
|
|
#![deny(warnings)]
|
|
#![cfg_attr(not(feature = "use_std"), no_std)]
|
|
|
|
// TODO: Disable this when toolchain != nightly.
|
|
#![feature(const_fn)]
|
|
|
|
// ## extern crate statements
|
|
extern crate cobs;
|
|
|
|
#[cfg(feature = "use_std")]
|
|
extern crate core;
|
|
|
|
extern crate ref_slice;
|
|
|
|
#[cfg(feature = "typed")]
|
|
extern crate serde;
|
|
|
|
#[macro_use]
|
|
#[cfg(all(test, feature = "typed", feature = "use_std"))]
|
|
extern crate serde_derive;
|
|
|
|
#[cfg(feature = "typed")]
|
|
extern crate ssmarshal;
|
|
|
|
|
|
// ## Sub-modules
|
|
#[cfg(feature = "use_std")]
|
|
pub mod channel;
|
|
|
|
pub mod error;
|
|
pub use error::{Error, Result};
|
|
|
|
#[cfg(all(feature = "typed", feature = "use_std"))]
|
|
pub mod typed;
|
|
|
|
// ## use statements
|
|
#[cfg(feature = "use_std")]
|
|
use ref_slice::ref_slice_mut;
|
|
|
|
#[cfg(feature = "use_std")]
|
|
use std::io::{self, Read, Write};
|
|
|
|
#[cfg(feature = "use_std")]
|
|
use std::ops::Deref;
|
|
|
|
|
|
/// Arbitrary user data.
|
|
pub type Payload = [u8];
|
|
|
|
/// Data that is encoded as a frame. It is ready to send, or may have
|
|
/// just been received.
|
|
pub type Encoded = [u8];
|
|
|
|
/// A buffer that is used as temporary storage.
|
|
/// There are no guarantees on its contents after use.
|
|
pub type TempBuffer = [u8];
|
|
|
|
// Note: BoxPayload and BoxEncoded store data in a Vec<u8> as that's
|
|
// what `cobs` returns us and converting them into a Box<[u8]> (with
|
|
// Vec::into_boxed_slice(self)) would require re-allocation.
|
|
//
|
|
// See https://doc.rust-lang.org/std/vec/struct.Vec.html#method.into_boxed_slice
|
|
|
|
/// Heap-allocated user data used as a return type.
|
|
#[cfg(feature = "use_std")]
|
|
#[derive(Debug)]
|
|
pub struct BoxPayload(Vec<u8>);
|
|
|
|
#[cfg(feature = "use_std")]
|
|
impl From<Vec<u8>> for BoxPayload {
|
|
fn from(v: Vec<u8>) -> BoxPayload {
|
|
BoxPayload(v)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "use_std")]
|
|
impl Deref for BoxPayload {
|
|
type Target = [u8];
|
|
|
|
fn deref(&self) -> &[u8] {
|
|
&*self.0
|
|
}
|
|
}
|
|
|
|
/// Heap-allocated frame data used as a return type.
|
|
#[cfg(feature = "use_std")]
|
|
#[derive(Debug)]
|
|
pub struct BoxEncoded(Vec<u8>);
|
|
|
|
#[cfg(feature = "use_std")]
|
|
impl From<Vec<u8>> for BoxEncoded {
|
|
fn from(v: Vec<u8>) -> BoxEncoded {
|
|
BoxEncoded(v)
|
|
}
|
|
}
|
|
|
|
#[cfg(feature = "use_std")]
|
|
impl Deref for BoxEncoded {
|
|
type Target = [u8];
|
|
|
|
fn deref(&self) -> &[u8] {
|
|
&*self.0
|
|
}
|
|
}
|
|
|
|
/// The frame ends with (and includes) this byte.
|
|
///
|
|
/// Consumers can read encoded data into a buffer until they encounter
|
|
/// this value and then use one of the `decode_*` functions to decode
|
|
/// the frame's payload.
|
|
pub const FRAME_END_SYMBOL: u8 = 0;
|
|
|
|
const HEADER_LEN: usize = 0;
|
|
|
|
const FOOTER_LEN: usize = 1;
|
|
|
|
/// Encode the supplied payload data as a frame at the beginning of
|
|
/// the supplied buffer `dest`.
|
|
///
|
|
/// Returns the number of bytes it has written to the buffer.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This function will panic if `dest` is not large enough for the encoded frame.
|
|
/// Ensure `dest.len() >= max_encoded_len(p.len())`.
|
|
pub fn encode_to_slice(p: &Payload, dest: &mut Encoded) -> Result<usize> {
|
|
// Panic if code won't fit in `dest` because this is a programmer error.
|
|
assert!(max_encoded_len(p.len()) <= dest.len());
|
|
|
|
let cobs_len = cobs::encode(&p, &mut dest[HEADER_LEN..]);
|
|
let footer_idx = HEADER_LEN + cobs_len;
|
|
dest[footer_idx] = FRAME_END_SYMBOL;
|
|
|
|
#[cfg(feature = "trace")] {
|
|
println!("framed: Frame code = {:?}", &dest[0..(footer_idx + 1)]);
|
|
}
|
|
Ok(cobs_len + HEADER_LEN + FOOTER_LEN)
|
|
}
|
|
|
|
/// Encode the supplied payload data as a frame and return it on the heap.
|
|
#[cfg(feature = "use_std")]
|
|
pub fn encode_to_box(p: &Payload) -> Result<BoxEncoded> {
|
|
let mut buf = vec![0; max_encoded_len(p.len())];
|
|
let len = encode_to_slice(p, &mut *buf)?;
|
|
buf.truncate(len);
|
|
Ok(BoxEncoded::from(buf))
|
|
}
|
|
|
|
/// Encode the supplied payload data as a frame and write it to the
|
|
/// supplied `Write`.
|
|
///
|
|
/// This function will not call `flush` on the writer; the caller do
|
|
/// so if this is required.
|
|
///
|
|
/// Returns the length of the frame it has written.
|
|
#[cfg(feature = "use_std")]
|
|
pub fn encode_to_writer<W: Write>(p: &Payload, w: &mut W) -> Result<usize> {
|
|
let b = encode_to_box(p)?;
|
|
w.write_all(&*b.0)?;
|
|
Ok(b.len())
|
|
}
|
|
|
|
/// Decode the supplied encoded frame, placing the payload at the
|
|
/// beginning of the supplied buffer `dest`.
|
|
///
|
|
/// When reading from a stream, the caller can continue reading data
|
|
/// and buffering it until a `FRAME_END_SYMBOL` is read, then pass the
|
|
/// whole buffer including `FRAME_END_SYMBOL` to this function for
|
|
/// decoding.
|
|
///
|
|
/// If there is more than 1 FRAME_END_SYMBOL within `e`, the result
|
|
/// is undefined. Make sure you only pass 1 frame at a time.
|
|
///
|
|
/// Returns the length of the payload it has decoded.
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// Returns `Err(Error::EofDuringFrame`) if `e` contains >= 1 bytes of
|
|
/// a frame, but not a complete frame. A complete frame should have
|
|
/// `FRAME_END_SYMBOL` as the last byte.
|
|
///
|
|
/// Returns `Err(Error::EofBeforeFrame`) if `e.len()` is 0.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This function will panic if `dest` is not large enough for the decoded frame.
|
|
/// Ensure `dest.len() >= max_decoded_len(e.len())?`.
|
|
pub fn decode_to_slice(e: &Encoded, mut dest: &mut [u8])
|
|
-> Result<usize> {
|
|
#[cfg(feature = "trace")] {
|
|
println!("framed: Encoded input = {:?}", e);
|
|
}
|
|
|
|
if e.len() == 0 {
|
|
return Err(Error::EofBeforeFrame);
|
|
}
|
|
|
|
if e[e.len()-1] != FRAME_END_SYMBOL {
|
|
return Err(Error::EofDuringFrame)
|
|
}
|
|
|
|
assert!(dest.len() >= max_decoded_len(e.len())?);
|
|
assert_eq!(e[e.len() - 1], FRAME_END_SYMBOL);
|
|
|
|
// Just the body (COBS-encoded payload).
|
|
let body = &e[0..(e.len()-1)];
|
|
|
|
let len = cobs::decode(body, &mut dest)
|
|
.map_err(|_| Error::CobsDecodeFailed)?;
|
|
|
|
#[cfg(feature = "trace")] {
|
|
println!("framed: body = {:?}\n\
|
|
framed: decoded = {:?}",
|
|
body, &dest[0..len]);
|
|
}
|
|
|
|
Ok(len)
|
|
}
|
|
|
|
/// Decode the supplied encoded frame, returning the payload on the heap.
|
|
#[cfg(feature = "use_std")]
|
|
pub fn decode_to_box(e: &Encoded) -> Result<BoxPayload> {
|
|
if e.len() == 0 {
|
|
return Err(Error::EofBeforeFrame);
|
|
}
|
|
let mut buf = vec![0; max_decoded_len(e.len())?];
|
|
let len = decode_to_slice(e, &mut buf)?;
|
|
buf.truncate(len);
|
|
Ok(BoxPayload::from(buf))
|
|
}
|
|
|
|
/// Reads bytes from the supplied `Read` until it has a complete
|
|
/// encoded frame, then decodes the frame, returning the payload on the heap.
|
|
#[cfg(feature = "use_std")]
|
|
pub fn decode_from_reader<R: Read>(r: &mut Read) -> Result<BoxPayload> {
|
|
// Read until FRAME_END_SYMBOL
|
|
let mut next_frame = Vec::new();
|
|
let mut b = 0u8;
|
|
loop {
|
|
let res = r.read(ref_slice_mut(&mut b));
|
|
#[cfg(feature = "trace")] {
|
|
println!("framed: Read result = {:?}", res);
|
|
}
|
|
match res {
|
|
// In the 2 EOF cases defer to decode_to_box to return the
|
|
// correct error (EofBeforeFrame or EofDuringFrame).
|
|
Err(ref e) if e.kind() == io::ErrorKind::UnexpectedEof =>
|
|
return decode_to_box(&*next_frame),
|
|
Ok(0) =>
|
|
return decode_to_box(&*next_frame),
|
|
|
|
Err(e) => return Err(Error::from(e)),
|
|
Ok(1) => (),
|
|
Ok(_) => unreachable!(),
|
|
};
|
|
|
|
#[cfg(feature = "trace")] {
|
|
println!("framed: Read byte = {}", b);
|
|
}
|
|
next_frame.push(b);
|
|
if b == FRAME_END_SYMBOL {
|
|
break;
|
|
}
|
|
}
|
|
assert_eq!(next_frame[next_frame.len()-1], FRAME_END_SYMBOL);
|
|
|
|
decode_to_box(&*next_frame)
|
|
}
|
|
|
|
/// Returns an upper bound for the decoded length of the payload
|
|
/// within a frame with the encoded length supplied.
|
|
///
|
|
/// Useful for calculating an appropriate buffer length.
|
|
pub fn max_decoded_len(code_len: usize) -> Result<usize> {
|
|
let framing_len = HEADER_LEN + FOOTER_LEN;
|
|
if code_len < framing_len {
|
|
return Err(Error::EncodedFrameTooShort)
|
|
}
|
|
let cobs_len = code_len - framing_len;
|
|
// If every byte is a 0x00, then COBS-encoded data will be the
|
|
// same length of 0x01.
|
|
let cobs_decode_limit = cobs_len;
|
|
Ok(cobs_decode_limit)
|
|
}
|
|
|
|
/// Returns an upper bound for the encoded length of a frame with
|
|
/// the payload length supplied.
|
|
///
|
|
/// Useful for calculating an appropriate buffer length.
|
|
pub const fn max_encoded_len(payload_len: usize) -> usize {
|
|
HEADER_LEN
|
|
+ cobs_max_encoded_len(payload_len)
|
|
+ FOOTER_LEN
|
|
}
|
|
|
|
/// Copied from `cobs` crate to make a `const` version.
|
|
///
|
|
/// Source: https://github.com/awelkie/cobs.rs/blob/f8ff1ad2aa7cd069a924d75170d3def3fa6df10b/src/lib.rs#L183-L188
|
|
///
|
|
/// TODO: Submit a PR to `cobs` to make `cobs::max_encoding_length` a `const fn`.
|
|
/// Issue for this: https://github.com/fluffysquirrels/framed-rs/issues/19
|
|
const fn cobs_max_encoded_len(payload_len: usize) -> usize {
|
|
payload_len
|
|
+ (payload_len / 254)
|
|
|
|
// This `+ 1` was
|
|
// `+ if payload_len % 254 > 0 { 1 } else { 0 }` in cobs.rs,
|
|
// but that won't compile in a const fn. `1` is less than both the
|
|
// values in the if and else branches, so use that instead, with the
|
|
// acceptable cost of allocating 1 byte more than required some of the
|
|
// time.
|
|
//
|
|
// const fn compiler error was:
|
|
// ```
|
|
// error[E0019]: constant function contains unimplemented expression type
|
|
// --> framed/src/lib.rs:388:11
|
|
// |
|
|
// 388 | + if payload_len % 254 > 0 { 1 } else { 0 }
|
|
// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
//
|
|
// error: aborting due to previous error
|
|
// ```
|
|
//
|
|
// Relevant section of const fn design doc:
|
|
// https://github.com/rust-lang/rfcs/blob/5f69ff50de1fb6d0dd8c005b4f11f6e436e1f34c/text/0911-const-fn.md#detailed-design
|
|
// const fn tracking issue: https://github.com/rust-lang/rust/issues/24111
|
|
|
|
+ 1
|
|
}
|
|
|
|
/// Sends encoded frames over an inner `io::Write` instance.
|
|
#[cfg(feature = "use_std")]
|
|
pub struct Sender<W: Write> {
|
|
w: W,
|
|
}
|
|
|
|
#[cfg(feature = "use_std")]
|
|
impl<W: Write> Sender<W> {
|
|
/// Construct a `Sender` that sends frames over the supplied
|
|
/// `io::Write`.
|
|
pub fn new(w: W) -> Sender<W> {
|
|
Sender::<W> {
|
|
w: w,
|
|
}
|
|
}
|
|
|
|
/// Consume this `Sender` and return the inner `io::Write`.
|
|
pub fn into_inner(self) -> W {
|
|
self.w
|
|
}
|
|
|
|
/// Flush all buffered data. Includes calling `flush` on the inner
|
|
/// writer.
|
|
pub fn flush(&mut self) -> Result<()> {
|
|
Ok(self.w.flush()?)
|
|
}
|
|
|
|
/// Queue the supplied payload for transmission.
|
|
///
|
|
/// This `Sender` may buffer the data indefinitely, as may the
|
|
/// inner writer. To ensure all buffered data has been
|
|
/// transmitted call [`flush`](#method.flush).
|
|
///
|
|
/// See also: [`send`](#method.send)
|
|
pub fn queue(&mut self, p: &Payload) -> Result<usize> {
|
|
encode_to_writer(p, &mut self.w)
|
|
}
|
|
|
|
/// Encode the supplied payload as a frame, write it to the
|
|
/// inner writer, then flush.
|
|
///
|
|
/// Ensures the data has been transmitted before returning to the
|
|
/// caller.
|
|
///
|
|
/// See also: [`queue`](#method.queue)
|
|
pub fn send(&mut self, p: &Payload) -> Result<usize> {
|
|
let len = self.queue(p)?;
|
|
self.flush()?;
|
|
Ok(len)
|
|
}
|
|
}
|
|
|
|
/// Receives encoded frames from an inner `io::Read` instance.
|
|
#[cfg(feature = "use_std")]
|
|
pub struct Receiver<R: Read> {
|
|
r: R,
|
|
}
|
|
|
|
#[cfg(feature = "use_std")]
|
|
impl<R: Read> Receiver<R> {
|
|
/// Construct a `Receiver` that receives frames from the supplied
|
|
/// `io::Read`.
|
|
pub fn new(r: R) -> Receiver<R> {
|
|
Receiver::<R> {
|
|
r: r,
|
|
}
|
|
}
|
|
|
|
/// Consume this `Receiver` and return the inner `io::Read`.
|
|
pub fn into_inner(self) -> R {
|
|
self.r
|
|
}
|
|
|
|
/// Receive an encoded frame from the inner `io::Read`, decode it
|
|
/// and return the payload.
|
|
pub fn recv(&mut self) -> Result<BoxPayload> {
|
|
decode_from_reader::<R>(&mut self.r)
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn max_encoded_len_ok() {
|
|
assert_eq!(max_encoded_len(0) , 2);
|
|
assert_eq!(max_encoded_len(1) , 3);
|
|
assert_eq!(max_encoded_len(2) , 4);
|
|
assert_eq!(max_encoded_len(254), 257);
|
|
assert_eq!(max_encoded_len(255), 258);
|
|
}
|
|
|
|
#[test]
|
|
fn max_decoded_len_too_short() {
|
|
match max_decoded_len(0) {
|
|
Err(Error::EncodedFrameTooShort) => (),
|
|
e @ _ => panic!("Bad output: {:?}", e)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn max_decoded_len_ok() {
|
|
assert_eq!(max_decoded_len(1) .unwrap(), 0);
|
|
assert_eq!(max_decoded_len(2) .unwrap(), 1);
|
|
assert_eq!(max_decoded_len(3) .unwrap(), 2);
|
|
assert_eq!(max_decoded_len(255).unwrap(), 254);
|
|
}
|
|
}
|
|
|
|
// TODO: Add tests for all encode_*, decode_* functions.
|
|
|
|
#[cfg(all(test, feature = "use_std"))]
|
|
mod rw_tests {
|
|
use channel::Channel;
|
|
use error::Error;
|
|
use std::io::{Read, Write};
|
|
use super::*;
|
|
|
|
#[test]
|
|
fn one_frame() {
|
|
let (mut tx, mut rx) = pair();
|
|
let p = [0x00, 0x01, 0x02];
|
|
assert_eq!(tx.send(&p).unwrap(), 5);
|
|
let recvd = rx.recv().unwrap();
|
|
assert_eq!(*recvd, p);
|
|
}
|
|
|
|
#[test]
|
|
fn two_frames_sequentially() {
|
|
let (mut tx, mut rx) = pair();
|
|
{
|
|
let sent = [0x00, 0x01, 0x02];
|
|
assert_eq!(tx.send(&sent).unwrap(), 5);
|
|
let recvd = rx.recv().unwrap();
|
|
assert_eq!(*recvd, sent);
|
|
}
|
|
|
|
{
|
|
let sent = [0x10, 0x11, 0x12];
|
|
assert_eq!(tx.send(&sent).unwrap(), 5);
|
|
let recvd = rx.recv().unwrap();
|
|
assert_eq!(*recvd, sent);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn two_frames_at_once() {
|
|
let (mut tx, mut rx) = pair();
|
|
let s1 = [0x00, 0x01, 0x02];
|
|
let s2 = [0x10, 0x11, 0x12];
|
|
|
|
tx.send(&s1).unwrap();
|
|
tx.send(&s2).unwrap();
|
|
|
|
let r1 = rx.recv().unwrap();
|
|
let r2 = rx.recv().unwrap();
|
|
println!("r1: {:?}\n\
|
|
r2: {:?}", r1, r2);
|
|
|
|
assert_eq!(*r1, s1);
|
|
assert_eq!(*r2, s2);
|
|
}
|
|
|
|
#[test]
|
|
fn empty_input() {
|
|
let (mut _tx, mut rx) = pair();
|
|
match rx.recv() {
|
|
Err(Error::EofBeforeFrame) => (),
|
|
e @ _ => panic!("Bad value: {:?}", e)
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn partial_input() {
|
|
let c = Channel::new();
|
|
let mut rx = Receiver::new(Box::new(c.reader()) as Box<Read>);
|
|
let mut tx_raw = c.writer();
|
|
tx_raw.write(&[0x01]).unwrap();
|
|
match rx.recv() {
|
|
Err(Error::EofDuringFrame) => (),
|
|
e @ _ => panic!("Bad value: {:?}", e)
|
|
}
|
|
}
|
|
|
|
fn pair() -> (Sender<Box<Write>>, Receiver<Box<Read>>) {
|
|
let c = Channel::new();
|
|
let tx = Sender::new(Box::new(c.writer()) as Box<Write>);
|
|
let rx = Receiver::new(Box::new(c.reader()) as Box<Read>);
|
|
(tx, rx)
|
|
}
|
|
}
|